Inversion symmetry and exact critical exponents of dissipating waves in the sandpile model.
نویسندگان
چکیده
By an inversion symmetry, we show that in the Abelian sandpile model the probability distribution of dissipating waves of topplings that touch the boundary of the system shows a power-law relationship with critical exponent 5/8 and the probability distribution of those dissipating waves that are also last in an avalanche has an exponent of 1. Our extensive numerical simulations not only support these predictions, but also show that inversion symmetry is useful for the analysis of the two-wave probability distributions.
منابع مشابه
Universality in critical exponents for toppling waves of the BTW sandpile model on two-dimensional lattices
Universality and scaling for systems driven to criticality by a tuning parameter has been well studied. However, there are very few corresponding studies for the models of self-organized criticality, e.g., the Bak, Tang, and Wiesenfeld (BTW) sandpile model. It is well known that every avalanche of the BTW sandpile model may be represented as a sequence of waves and the asymptotic probability di...
متن کاملAvalanches and waves in the Abelian sandpile model
We numerically study avalanches in the two-dimensional Abelian sandpile model in terms of a sequence of waves of toppling events. Priezzhev et al. @Phys. Rev. Lett. 76, 2093 ~1996!# have recently proposed exact results for the critical exponents in this model based on the existence of a proposed scaling relation for the difference in sizes of subsequent waves, Ds5sk2sk11 , where the size of the...
متن کاملEffects of bulk dissipation on the critical exponents of a sandpile.
Bulk dissipation of a sandpile on a square lattice with the periodic boundary condition is investigated through a dissipating probability f during each toppling process. We find that the power-law behavior is broken for f>10(-1) and not evident for 10(-1)}>f>10(-2). In the range 10(-2)>or=f>or=10(-5), numerical simulations for the toppling size exponents of all, dissipative, and last waves have...
متن کاملCritical exponents in stochastic sandpile models
We present large scale simulations of a stochastic sandpile model in two dimensions. We use moments analysis to evaluate critical exponents and finite size scaling method to consistently test the obtained results. The general picture resulting from our analysis allows us to characterize the large scale behavior of the present model with great accuracy. Sandpile automata [1] are prototypical mod...
متن کاملCharacteristics of deterministic and stochastic sandpile models in a rotational sandpile model.
Rotational constraint representing a local external bias generally has a nontrivial effect on the critical behavior of lattice statistical models in equilibrium critical phenomena. In order to study the effect of rotational bias in an out-of-equilibrium situation like self-organized criticality, a two state "quasideterministic" rotational sandpile model is developed here imposing rotational con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 85 19 شماره
صفحات -
تاریخ انتشار 2000